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Summary. A second order partial differential operator is applied to an image func-
tion. To this end we consider both the Laplacian and a more general elliptic operator.
By using a multigrid operator known from the so-called approximation property, we
derive a multiresolution decomposition of the image without blurring of edges at
coarser levels. We investigate both a linear and a nonlinear variant and compare to
some established methods.
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1 Introduction

In a more or less parallel development the idea of multiresolution has become
an important instrument both in the field of signal processing and in the field
of numerical methods for the solution of partial differential equations (PDEs).
With respect to the latter we allude to the multigrid type of method which
solves discretized elliptic, parabolic and hyperbolic PDEs as well as integral
equations by accelerating a basic iterative solution process through adequate
coarse grid corrections [5, 14]. A historical overview of the development in-
cluding a list of pioneering papers is given by Wesseling [26].

Terzopoulos [23] was the first to apply multigrid for image analysis. More
recently, the use of multigrid for image processing purposes has been proposed
by Acton [1], Kimmel et al. [16], Shapira [20], Ke Chen et al. [9], Bruhn et al.
[6] and others. However, its use is restricted to the efficient solution of partial
differential equations (typically diffusion and Euler-Lagrange equations) which
could also be achieved by other means.

De Zeeuw (this author) started to use multigrid operators as an intrinsic
and indissoluble part of the so-called multigrid image transform [13]. In this
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scheme, first a second order partial differential operator is applied to an im-
age function followed by a pyramidal decomposition using typical multigrid
operators. The case of isotropic homogeneous diffusion (Poisson) provides an
example that leads to a linear multiresolution scheme. It can be applied suc-
cessfully with respect to image fusion [13].

In the present paper we consider a general elliptic operator but we focus on
the isotropic inhomogeneous diffusion operator, with coefficients in the fashion
of Perona and Malik [18, 19]. It leads to a nonlinear multiresolution scheme.
A future application of the new scheme might be in image fusion using a non-
linear multiresolution decomposition implying a multisource segmentation.

The paper is organized as follows. After a recapitulation on multigrid in
Section 2 we discuss the multigrid image transform in Section 3. In particular
we consider one that is associated with the Laplacian (leading to a linear mul-
tiresolution scheme) and one that is associated with a more general elliptic
partial differential operator (leading to a nonlinear multiresolution scheme).
We show results of the transforms in Section 4 and compare to other multireso-
lution schemes amongst which a nonlinear one by Heijmans and Goutsias [15].
We end up with concluding remarks.

2 Recapitulation on Multigrid

A prohibitive problem with the solution of large (non)linear systems of equa-
tions is that the number of arithmetic operations involved is more than lin-
early proportional to the number of unknowns. For example, the complexity
of the direct solution of large sparse linear systems is still quadratic even
when exploiting the structured sparsity. Also the fill-in demands more than
proportional storage. Such systems arise after the discretization of PDEs on a
spatial grid. For special PDEs, e.g. Poisson problems, considerable efficiency
can yet be achieved, for an overview see e.g. Botta et al. [4].

Multigrid is a numerical class of methods which tackles the complexity
problem head-on by representing and solving a problem and its derivations on
a sequence of increasingly coarser (finer) grids. Nowadays extensive literature
is available on multigrid. We merely point to Brandt [5], Hackbusch [14],
Wesseling [26] and (more recent) to Trottenberg et al. [24] and Shapira [20].

Here we recapitulate particular items that we need for the multigrid trans-
form to be discussed from an article by De Zeeuw (this author) on a ro-
bust multigrid algorithm for the numerical solution of (scalar) diffusion and
convection-diffusion problems [10]. The algorithm has been implemented and
exists by the name of MGD9V. Tests demonstrate its (optimal) complexity
for a wide range of problems known to be difficult to solve. It employs a set
of rectangular and increasingly coarser grids (vertex-centered):

20D 21D 2D ... D .

The grids are described as follows:
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Fig. 1. Example sequence of increasingly coarsened grids used in multigrid (vertex-
centered)

O ={(zi,yi) [zi =01+ (i = Dhg,yi = 02+ (j — D} (1)

where (01, 02) is the origin and hx_; = 2hy. See Figure 1 for an example.
S(f2) denotes the linear space of real-valued functions on (2

S(2) = {9 | gr : 2 — R},

where g € S(f2) is called a grid-function. The algorithm is intended for
the solution of linear systems resulting from the 9-point discretization of the
following general linear second-order elliptic partial differential equation in
two dimensions:

Lu= =V - (D(x)Vu(z)) + b(z) - Vu(z) + c(r)u(z) = f(z) (2)

on a bounded domain 2 C R? with suitable boundary conditions. D(z) is
a positive definite 2 x 2 matrix function and c(z) > 0. It is assumed that
the discretization of (2) is performed by a finite element or finite volume
technique, leading to
where

L, : S, —S({2) (4)
is the discretization of L and f, € S(§2,) is the discretization of f. Grid-
function %, is the solution that is looked for. The solution algorithm uses
sawtooth multigrid cycles, that is, a smoother is applied after the coarse grid
correction (CGC). Let w, be an approximation of @,. The CGC at level k
reads:

Tk = fx — Liu; (5)

Tp—1 = Rgp_17k; (6)

solve (approximately) Lg_1ex—1 = rg—_1; (7)
U = Ug + Prep_1. (8)
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S(2) > S(2,)

S(£2n-1)

Y

Fig. 2. Diagram of Galerkin approximation

It is immediately followed by:
Uy = SMOOTH(fy, Ly, tig). (9)

In MGD9V the particular choice for SMOOTHY() is Incomplete Line LU fac-
torization (for a description see [11] and the references mentioned there). The
grid transfer operators are defined as follows.

Rio1 : S(Q) — S(2_1), k=mn,...,1 (10)

is the restriction operator that transfers the residual from the grid (2; onto
the coarser grid 2,1, and

Pk : S(.Qk_l) —>S(.Qk), k= 1,...,n (11)

is the prolongation operator that interpolates and transfers a correction for
the solution from the coarser towards the finer grid. The operator Lj_; is
defined by the sequence of operations

Ly 1=Rp 1LxPr, k=mn,...,1 (12)

known as the Galerkin coarse grid approzimation. One cycle of sawtooth multi-
grid is defined by application of (5)-(9) for & = n. A recursion enters at
stage (7). The system of equations at this stage is approximated by applying
again the above cycle, but now at level k — 1. (At level 0 mere smoothing is
performed).

The diagram of Figure 2 illustrates the coherence of the afore mentioned
operators. We choose the restriction to be the transpose of the prolongation

Rp,.1=P', k=n,... 1 (13)

Hence, once Py has been chosen, Rx_1 and Li_; follow automatically. One
actually computes the coarse grid matrix of Lj_;. Note that by (13) the
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possible (anti)symmetry of Ly is maintained on the coarser grid. Further, it
has been proved [10] that when Ly is a conservative discretization of L and
Py, interpolates a constant function exactly, then the Galerkin approximation
Ly is conservative as well. In the case of e.g. the Poisson equation and
discretization by bilinear finite elements, bilinear interpolation is the natural
choice for Pj. This case is discussed in Section 3.2. In the case of discontinuous
diffusion coefficients a far more sophisticated choice is required [10]. This case
is discussed in Section 3.3.

Adiabatic Boundary Conditions

At the boundaries of {2 one often assumes vanishing Neumann boundary con-
ditions. At §2,, we discretize them in a conservative fashion, e.g. by using
bilinear finite elements. The following statements can all be derived from [10].
The boundary conditions inherited by L, 0 < k < n, remain vanishing Neu-
mann ones. All L, 0 < k < n have a singular matrix and therefore the L,;l
do not exist. However, systems of type Liur = gx can still be solved, provided
that g is in the range of Ly. A sufficient and necessary condition for the latter
is proved to be that the sum of elements of g5 vanishes. The said discretization
warrants this condition for k = n. Further, it is proved that Ry_1gy inherits
the condition. It follows that the multigrid algorithm in [10] is able to solve
the described systems iteratively, even though the matrix L,, is singular. The
solution uy is unique up to a constant (grid-function).

3 The Multigrid Image Transform

3.1 Introduction

So far, we have recapitulated how a multigrid method solves large linear sys-
tems of equations arising from discretized PDEs in a very efficient manner
based on a recursive procedure. However, the current section is not about
multigrid solution methods, but about image transforms involving multigrid
operators. The exploits of Section 2 provide some necessary tools for the
transforms to be discussed. Another tool that we need is the multigrid ap-
proximation operator

Ek . S(Qk)HS(Qk), k:l,...,n (14)
which is defined as:
Ey=L;' — P L' Ry, k=1,...,n (15)

It is associated with the so-called approximation property. Under a certain
regularity of the boundary value problem (2), a discretization (3) by (bilinear)
finite elements, and Py is bilinear interpolation, it can be shown that (see
Hackbusch [14, §6.3]):
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Bkl < ChE (16)

where hy, is the mesh-size of (2, and ||-||2 is the Euclidean norm on S(£2;). This
operator plays an important role in convergence proofs in multigrid theory.
In [13] it has been proposed to let Ej serve a practical purpose as well. There
it is introduced as a high-pass filter in a multiresolution scheme: the multigrid
image transform[13]. The transform reads as follows. Let u,, be an image, de-
fined as a grid-function on S(§2,). Then compute grid-function f, = Lyuy,
for the definition of L, see (2) and (3). Note that this is contrary to finding a
solution u,, for given f,, which was the problem stated in Section 2. An im-
portant example for L,, is the discretized Laplacian operator, this is discussed
in Section 3.2. Let

kakak+1; k:n—l,...,() (17)
then we define the multigrid image transform or multigrid image decomposition
as follows )

ao = LO_ f07

{ dk = E‘]ka7 k:L...,n. (18)

The aj, are called approrimations and the dj are called details. The recon-
struction counterpart reads:

ar = Prap_1+d, k=1,...,n. (19)
Regarding (3), (10)—(12), (15), (17)—(19) it follows that
Lkak:fk7 k=0,...,n.

which implies that the reconstruction (19) with respect to the decomposi-

tion (18) is a perfect one. The proof can be found in a previous paper [13].
As with other multiresolution methods, manipulations of the detail coeffi-

cients dj may allow for a better tackling of image processing problems.

Adiabatic Boundary Conditions Revisited

Under these boundary conditions FEj is meaningful, even though it is not
defined in the strict sense. It can be proved that if g is in the range of Ly
then Rj_1gx is in the range of Lj_1 and therefore Fjygr can still be applied.
Again, the result is unique up to a constant (grid-function).

3.2 The Laplacian Multigrid Image Transform
Laplacian

Firstly, we consider the case of both isotropic and homogeneous diffusion
which boils down to the use of the Laplacian operator —A. Let L, be the
discretization on the grid (2, (uniform and rectangular). If discretized by
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means of bilinear finite elements (or volumes) it gives rise to the following
3 x 3 stencil (or mask) for meshsize 1:

N T S
Lo~ g|-1 48  ~1]. (20)
-1 -1 -1

Bilinear Prolongation

Under the assumption of (13), the prolongation must satisfy an accuracy con-
dition, in order to obtain mesh-size independent rate of multigrid convergence.
Such an accuracy condition is increasingly stringent for higher orders of the
PDE, for more details see [5, 14, 26]. Here, bilinear interpolation satisfies the
accuracy condition for the second order PDE. This interpolation amounts to
taking an equal average of solution-values at neighbouring coarse-grid points,
see Figure 3 for an illustration. At the grid-points of the fine grid that coincide

® O (
@ coarse-grid point

1/2 1/4 1/4
v o fine-grid point
©) O o
A

1/2 1/4 1/4
® > O = ®

I 1/2 1/2
y

Fig. 3. Bilinear prolongation.

with the coarse grid we take identical values. The bilinear prolongation can
also be denoted by the stencil

Py ~ (21)

ENTE STt e
[N T
I IRt

This stencil shows the non-zero values of the fine-grid function generated
by the prolongation of a coarse-grid function which equals 1 at one point
and 0 elsewhere. Because of (13), the same stencil also represents the chosen
restriction operator.
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Fase of Implementation

With the prolongation and restriction thus chosen the Laplacian stencil (20)
is invariant on the coarser grids. That is, all L produced by (12) turn out to
be represented by the same stencil on the subsequently coarser grids S(f2),
0 < k < n. We assume adiabatic boundary conditions which are also retained.
The proof can be derived from [10].

Through this foreknowledge the multigrid method can be simplified greatly
with respect to its implementation. It is not necessary to perform (12) explic-
itly as we already know the outcome both in the interior and at the boundaries.
Another simplification lies in the choice of the basic iterative method (also
known as smoother or relaxation method). With the above Laplacian stencil
one can resort to simple and vectorizable smoothers like e.g. damped Jacobi.
Moreover, the method becomes economical with computer memory as storage
of matrices and their decompositions is not required.

3.3 The Elliptic Multigrid Image Transform
Matriz-dependent Prolongations and Restrictions

We recall the elliptic operator (2) defined in Section 2. We add that the pos-
itive definite tensor D is allowed to be discontinuous across an interface I" in
the interior of 2. Obviously, definitions of coefficients in the fashion of Perona
and Malik allow for this to happen. Let L,, be the discretization on {2, (uni-
form and rectangular grid) by means of bilinear finite elements (or volumes).
When D is strongly discontinuous, multigrid with bilinear prolongation be-
comes excruciatingly slow: the number of iterative cycles necessary to obtain
a fixed reduction of r,, becomes prohibitively large. The explanation is as fol-
lows. Let n = n(x) be the normal at I'. Then, as has been argued by Alcouffe
et al. [2], continuity of n - (DVu) instead of continuity of Vu should be the
underlying assumption for interpolation. This leads to jump conditions that
need to be satisfied across interfaces. Only in the (special) case that the dif-
fusion coefficient D is continuous, it follows that Vu is continuous as well and
the use of bilinear interpolation is justified. For an illustrative one-dimension
example on interface problems see Hackbusch [14, §10.3.1]. The right assump-
tion that n - (DVu) is continuous leads to the remedy of operator-dependent
prolongations (and restrictions). Figure 4 provides an in situ illustration of a
biased prolongation, satisfying a jump condition for the case that the diffusion
coefficient is negligible in the shaded region. One notes the obvious differences
with Figure 3.

In [10] a matrix-dependent prolongation operator has been proposed, able
to handle both the case of (dominant) advection and interface problems at
the same time. Here we give a brief outline of the operator. At each level k
the (black box) multigrid algorithm derives the necessary information on the
operator coefficients from the matrix Ly (this explains the adjective “matrix-
dependent”). The grid {2 is split into four disjoint sub-grids as follows:
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@ coarse-grid point

1/2 1/2 o fine-grid point
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|

Fig. 4. Example of biased prolongation.

Qk,(o,o) =1,

0 =@+ hi,y) € | (2,y) € D1}y
P00 ={(v,y +hi) € 2 | (w,y) € 21},
Dy =@+ he,y +he) € 2 | (2,y) € 251},

where hy, is the mesh-size of grid 2. We proceed as follows.

1. At the fine-grid points in {2, (0,0), we simply adopt the values on 2.

2. Let § € {24 (1,0) be a point where we have to interpolate a coarse grid
correction. It is by definition located on a horizontal grid-line between
two neighbouring points at {2;_;. Locally, we decompose the matrix Ly
in its symmetric and antisymmetric part. The symmetric part is presumed
to correspond with diffusion and the zeroth order term, the antisymmetric
part with convection. We reconstruct the various operator coefficients at
¢ and apply essentially one-dimensional interpolation. The interpolation
coefficients are stored.

3. Let & € 2 (0,1) be a point where we have to interpolate a coarse grid
correction. We interpolate as above, but now on a vertical grid-line of
1.

4. At the fine-grid points in {2 (1 1), we solve the homogeneous equation
(with respect to Ly) to obtain the correction.

5. Now that Py has been defined (and therefore Ry_; as well) we compute
L1 according to (12) at the next coarser grid and we repeat the whole
process above for level k — 1 (k > 0).
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Definition

Summarizing, the elliptic multigrid image transform is defined by (17)—(18),
through the elliptic operator L and its discretization L, (see (2) and (3)),
through the matrix-dependent P and (12)—(13). The Laplacian multigrid
image transform of Section 3.2 is a particular example of this transform.

Implementation

The implementation of the actual computation of Lj_; according to (12) with
the above matrix-dependent Py is far from trivial. The implementation of a
highly robust smoother like e.g. incomplete line LU factorization is also not a
trivial matter, but it is what the multigrid method wants due to the discon-
tinuous diffusion coefficients. For these reasons, the general elliptic multigrid
image transform is more intricate than the Laplacian one. Nevertheless, the
necessary work is of low and linear complexity. (The stencils Ly do not grow
on the coarser grids but remain 3 x 3 just like L,.)

4 Comparative Results

Perona and Malik Type Diffusivity

For experiments with the elliptic multigrid transforms we limit ourselves to the
case of no convection and no zeroth order term. With respect to the diffusivity
we consider diffusion which is again isotropic but inhomogeneous. It boils down
to the use of the operator —V - (DVu) where D is scalar-valued, not a tensor
(several possibilities exist for D as tensor as pointed out by Weickert [25]).
Perona and Malik [18, 19] have reasoned that intra-region smoothing should
occur preferentially over inter-region smoothing. The diffusion is chosen locally
as a function of the magnitude of the gradient of the image function

D(z) = g(|Vu(x)[*). (22)
With respect to the function g we opt here for the following;:

1
g(s) = m (23)

see Aubert et al. [3, §3.3.1] for a full motivation. In the context of the Perona-
Malik model this gives better smoothing in the tangential direction than in
the normal direction.

Discretized, this diffusivity expresses the coupling that exists between
points in the image. By means of (12) this coupling is transferred to coarser
grids. The matrix-dependent grid transfer operators secure that weak (strong)
couplings remain weak (strong). Therefore, as with time integration, the dif-
fusivity helps to preserve edges (but now on coarsened grids).



The Multigrid Image Transform 319
FExperiments

We apply both the Laplacian and the elliptic multigrid transform with the
above diffusion operator, both with adiabatic boundary conditions, to the
grayscale image at the top of Figure 5. We compare with the results of well-
known linear multiresolution schemes as wavelets [17] (see Figure 5) and
Laplacian pyramids [7], gradient pyramids [8] and steerable pyramids [21]
(see Figure 6).

Further, in Figure 7, we compare with the results of what we refer to
as the “maxmin-lifting scheme”. This scheme is a nonlinear version of the
lifting scheme [22] involving quincunx grids. It is defined by intertwined use
of the nonlinear max- and min-lifting schemes by Heijmans and Goutsias [15].
The max-lifting scheme has the property that it preserves local maxima over
several scales. The min-lifting scheme has a similar property with respect
to local minima. An implementation of the maxmin-lifting scheme can be
found through [12]. Clearly, Figure 7 depicts the least blurring of edges on
subsequently coarsened grids.

Efficiency

Table 1 shows CPU times consumed on a 2.16 GHz processor by a few selected
multiresolution schemes (decomposition plus reconstruction) on grids with
different dimensions. The costs of the schemes appear to be within the same

Table 1. CPU seconds consumed by multiresolution schemes

Grid Daubechies 4 maxmin-lifting elliptic MG
256 x 256 0.43 0.45 0.30
512 x 512 0.74 0.94 0.79

1024 x 1024 2.40 3.82 3.08

range. Moreover, the measurements accord with the claimed computational
complexities.

5 Concluding Remarks

New multiresolution schemes have been investigated, based on an image trans-
form by a discretized elliptic partial differential operator and use of a multigrid
operator, leading to pyramidal representations. Depending on the differential
operator, the scheme is linear or nonlinear. The linear scheme (Laplacian
multigrid image transform) is easy to implement, rapidly converging and eco-
nomical with storage. An example of the nonlinear scheme (elliptic multigrid
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Fig. 5. Top: original image. Middle and bottom row show approximations on subse-
quently coarsened grids (from left to right). Middle row: Haar wavelet decomposition.
Bottom row: wavelet decomposition by Daubechies 4.



The Multigrid Image Transform 321

i
£ &5
£

Fig. 6. Approximations on subsequently coarsened grids (from left to right). Top
row: Laplacian pyramid. Middle row: gradient pyramid. Bottom row: steerable pyra-
mid (6 bands).
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Fig. 7. Approximations on subsequently coarsened grids (from left to right). Top
row: Laplacian multigrid image transform. Middle row: elliptic multigrid image
transform. Bottom row: maxmin-lifting scheme.
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image transform) based on Perona and Malik type diffusivity has been devel-
oped. Though more intricate than the linear scheme, the complexity remains
low and linear. A comparison with several well-known and established lin-
ear multiresolution schemes has been made, but also with a nonlinear lifting
scheme. The latter scheme and both multigrid image transforms appear to
be in the same league with respect to preservation of edges at coarser grids.
The elliptic multigrid image transform appears to have a slight edge over the
nonlinear lifting scheme.

So far, we have considered mere scalar diffusion. A diffusion tensor leading
to anisotropic (tensor) diffusion filters [25] with special spatial regularization
properties could be a topic for future research. Another future topic could be
image fusion, as the elliptic multigrid image transform appears to relate to
segmentation.
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